Influence of Potassium Nutrition On Nitrogen Use Efficiency

Philip J. White
(The James Hutton Institute, UK)

Jeff J. Volenec
(Purdue University, USA)

Frontiers in Potassium Conference and Workshop, Rome, Italy, 18 January 2017
Nitrogen Use Efficiency

\[
\text{NUE} = \text{NUpE} \times \text{NUtE}
\]

Agronomic N Use Efficiency =
N Uptake Efficiency \times N Utilisation Efficiency

\[
\frac{(\text{yield} / \text{available N})}{(\text{N acquired} / \text{available N})} \times (\text{yield} / \text{N acquired})
\]

Crop yield is determined by a critical input that is in short supply: the limiting factor.

Inputs that do not correct the limiting factor are generally ineffective in increasing yield.

Any nutrient that limits yield will reduce the use efficiency (yield / input) of all other nutrients.
Optimising Crop Nutrition Maximises Yield and Resource Use Efficiency

French Beans

Increasing NUE with K application

Optimising Crop Nutrition Maximises Yield and Resource Use Efficiency

French Beans

Increasing KUE with N application

Optimising Mineral Nutrition
Crop and Environment Specific

Agronomic Models assisting fertiliser management that account for interactions between N, P and K:

• Quantitative evaluation of the fertility of tropical soils – QUEFTS (Janssen et al. 1990)

• Warwick-HRI software combining N_ABLE, PHOSMOD and POTAS (Zhang et al. 2007)

• Nutrient Expert software for hybrid maize (Xu et al. 2016)

Janssen et al. (1990) Geoderma 46: 299-318
Xu et al. (2016) Field Crops Research 194: 75-82
Nitrogen Uptake Efficiency

\[
\text{NUE} = \text{NUpE} \times \text{NUtE}
\]

Agronomic strategies accelerating N delivery to roots
(1) Increasing N concentration in the soil solution
(2) Increasing mass flow of the soil solution

Physiological strategies accelerating N uptake by roots
(1) Increasing capacity for N transport across the plasma membrane
(2) Increasing the surface area of the root system
(3) Placement of roots in volumes with greatest N availability

White et al. (2013) Frontiers Plant Science 4: #193
Nitrogen in Agriculture

- Increase capacity for N uptake
- Reduce losses to environment
- Accelerate decomposition of organic matter
Improving Nitrogen Uptake
Direct and Indirect Effects of Potassium

Direct effects
• K^+ and NH_4^+ compete for exchange sites in the soil
• K^+ uptake provides charge compensation for nitrate uptake

Indirect Effects
• Potassium is required by microbes and, therefore, can affect N cycle in soil (nitrification/denitrification) and N_2 fixation in legumes
• Plant K nutrition affects transpiration and, thereby, mass flow of soil solution to root surface
• Plant K nutrition affects phloem transport and, therefore, N-assimilation in shoot, carbon allocation within plants, and root architecture
Root System Architectures for Nutrient Acquisition

A. Topsoil foraging for P
B. Intermediate response for K
C. Steep, cheap and deep for N

Nutrients Affect Root System Architecture

Giehl et al. (2014) *J. Exp. Bot.* 65, 769-778
Different responses to N deficiency in presence and absence of K
Optimal response for NUpe if uncompromised by K deficiency

Kellermeier et al. (2014) *Plant Cell* 26: 1480-1496
Regulation of Nitrate Uptake by Plant Nutritional Status

Siddiqi et al. (1989) *Plant Physiology* 90, 806-813
Glass et al. (1990) *Plant Physiology* 93, 1585-1589
Uptake of Nitrate, Ammonium and Organic Nitrogen by Roots

HATS = high affinity transporters
LATS = low affinity transporters

Nacry et al. (2013) Plant and Soil 370: 1-29
Regulation of Nitrogen Acquisition

Importance of Potassium Nutrition
Carbon Allocation & Systemic Signalling

Marschner’s Mineral Nutrition of Higher Plants, 2012
Traits Improving Nitrogen Use Efficiency

- NUtE often contributes more than NUpE to NUE when N supply is low.
- Crops with greater NUtE have faster canopy establishment, greater photosynthesis, larger harvest index, lower critical N concentrations, better N redistribution between tissues…
Adequate potassium nutrition affects all aspects of Nitrogen Utilisation Efficiency:

- **Capacity for growth**: especially cell elongation, water relations & gas exchange
- **Assimilation of nitrogen**: especially for photosynthesis, growth and yield formation
- **Partitioning of C and N to growth of new tissues**: impacts root N acquisition and photosynthesis
- **Translocation of C and N to seed, harvest index and yield formation**
Importance of Potassium Nutrition
Nitrogen Assimilation in Shoot

Marschner’s Mineral Nutrition of Higher Plants, 2012
Importance of Potassium Nutrition
Nitrogen Redistribution

Partitioning of Nitrogen in a Potato Plant

Importance for maintaining charge balance in xylem and phloem
Importance for generating osmotically-driven fluxes in phloem

O’Brien et al. (2016) *Molecular Plant* 9, 827-856
Potassium Deficiency Reduces Photosynthesis

Summary – Potassium Nutrition Influences Nitrogen Use Efficiency

Optimising Crop Nutrition maximises yield and resource use efficiency

Optimising Potassium Nutrition improves NUE, NUpE, and NUtE

allows root architecture and N uptake to respond to N supply
enables nitrate uptake & N assimilation in shoot
enables C and N redistribution in plant
maximises photosynthesis, harvest index, and yield

Frontiers in Potassium, Rome, Italy, January 2017